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Abstract
Global biodiversity is facing a crisis, which must be solved through effective policies 
and on-the-ground conservation. But governments, NGOs, and scientists need reliable 
indicators to guide research, conservation actions, and policy decisions. Developing 
reliable indicators is challenging because the data underlying those tools is incomplete 
and biased. For example, the Living Planet Index tracks the changing status of global 
vertebrate biodiversity, but taxonomic, geographic and temporal gaps and biases are 
present in the aggregated data used to calculate trends. However, without a basis for 
real-world comparison, there is no way to directly assess an indicator's accuracy or 
reliability. Instead, a modelling approach can be used. We developed a model of trend 
reliability, using simulated datasets as stand-ins for the “real world”, degraded samples 
as stand-ins for indicator datasets (e.g., the Living Planet Database), and a distance 
measure to quantify reliability by comparing partially sampled to fully sampled trends. 
The model revealed that the proportion of species represented in the database is not 
always indicative of trend reliability. Important factors are the number and length of 
time series, as well as their mean growth rates and variance in their growth rates, both 
within and between time series. We found that many trends in the Living Planet Index 
need more data to be considered reliable, particularly trends across the global south. 
In general, bird trends are the most reliable, while reptile and amphibian trends are 
most in need of additional data. We simulated three different solutions for reducing 
data deficiency, and found that collating existing data (where available) is the most 
efficient way to improve trend reliability, whereas revisiting previously studied popu-
lations is a quick and efficient way to improve trend reliability until new long-term 
studies can be completed and made available.
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1  |  INTRODUC TION

An urgent data crisis complicates the global biodiversity crisis 
(Turak et al., 2017). Attempts to assess global biodiversity (e.g., the 
Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services, IPBES) and to set global policies and goals 
that will halt or reverse its loss (e.g., the Convention on Biological 
Diversity, CBD, and Sustainable Development Goals, SDGs) need 
reliable and up-to-date scientific information (Jetz et al., 2019). Yet 
most studies and tracking programs are either species- or region-
focused, temporally limited, and inherently biased, all of which re-
sults in large geographic and taxonomic knowledge gaps (Hortal 
et al., 2015; Jetz et al., 2019; Meyer et al., 2015; Proença et al., 2017; 
Turak et al., 2017). Advances in technologies such as camera track-
ing, satellite sensors, digital image recognition, network speed and 
capacity, data access, and mobile devices are improving our abil-
ity to track and count populations of birds and mammals (Lausch 
et al., 2016; Nichols et al., 2011; Rose et al., 2015) but our datasets 
are far from complete. The situation is worse for amphibians, rep-
tiles, insects, and other groups, for which many species have yet to 
even be described (Mora et al., 2011).

We need tools to improve our understanding of global biodi-
versity within the limitations imposed by biased and incomplete 
datasets. Mace and Baillie  (2007) suggested a solution: develop 
indicators based on existing data, understand data biases, and de-
velop methods to reduce the bias. Biodiversity indicators summarize 
complex scientific information in a simple way, often serving as a 
bridge between science and policy (Secretariat of the Convention on 
Biological Diversity, 2006). But what can we expect from indicators 
that summarise only a fraction of the biodiversity they represent? 
To what extent can we rely on them to present a true picture of the 
state of global biodiversity?

Two of the best-known biodiversity indicators are the Living 
Planet Index (LPI), which tracks vertebrate population trends (McRae 
et al.,  2017), and the Red List Index (RLI), which tracks extinction 
risk trends (Butchart et al.,  2005). The RLI is based on extinction 
risk classifications at the species-level, created by expert assess-
ment using an objective set of criteria (IUCN, 2012). By contrast, the 
LPI uses continuous population data collected by scientific surveys. 
However, as intensive global long-term studies do not exist for most 
species, the LPI calculates trends from data compiled from a vari-
ety of sources, including grey literature (McRae et al.,  2017). This 
means a lack of standardization in study design (individual popula-
tion time series are standardized, but there is no standardization be-
tween populations), monitoring strategy, frequency of assessment, 
monitoring intensity and effort, even data type (densities, counts of 
individuals or breeding pairs or even nests, and population size esti-
mates are mixed together). The LPI has taxonomic and geographical 
imbalances (Collen et al., 2009; McRae et al., 2017), a problem found 
also in other global biodiversity datasets (Boakes et al., 2010; Collen 
et al., 2008; Yesson et al., 2007). Further, many included time series 
are short (McRae et al., 2016; Proença et al., 2017; Saha et al., 2018), 
and shorter trends tend to be less accurate than longer ones 

(Arkilanian et al., 2020; Wauchope et al., 2019). Recognizing these 
limitations, the LPI employs statistical techniques to increase the 
accuracy and precision of trends. Generalized additive modelling or 
log-linear interpolation are used (depending on the length of a given 
time series) to fill in missing values in time series, bootstrapping is 
used to generate confidence intervals (Collen et al., 2009), and a hi-
erarchical weighting system is applied to account for geographical 
and taxonomic bias (Collen et al., 2009; McRae et al., 2017).

Nonetheless, the LPI's conclusions on biodiversity change have 
been questioned, with Buschke et al.  (2021) finding an inherent 
negative bias in the calculation of LPI trends due to random pop-
ulation fluctuations and Leung et al.  (2020) finding that the LPI is 
biased by clusters of extreme declining populations. Further, Leung 
et al. (2020) used the Living Planet Database (LPD) the LPI is based 
on to show that global biodiversity is not declining. While the anal-
ysis of Leung et al. (2020) has been contradicted by others (Loreau 
et al., 2022; Murali et al., 2022; Puurtinen et al., 2022), the contro-
versy has placed a spotlight on the LPI and other global biodiversity 
indicators and increased the urgency of understanding how well we 
can rely on them.

Without a basis for real-world comparison, there is no way to 
directly assess an indicator's accuracy or reliability. However, there 
are ways to address this question indirectly. One solution was em-
ployed by the sampled approach to the Red List Index (sRLI), which 
uses the minimum representative sample size (sample size being the 
number of species represented in the index for a particular taxo-
nomic group) needed to achieve less than a 5% probability of falsely 
detecting a positive slope when the Red List Index trend is negative 
(Baillie et al., 2008; Henriques et al., 2020). Minimum representative 
sample size was determined through sub-sampling of comprehen-
sively assessed species groups on the IUCN Red List (e.g., mammals, 
birds etc.; Baillie et al., 2008; Henriques et al., 2020).

Two challenges presented by the LPI require a different ap-
proach than that taken for the sRLI. First, LPI trends are based 
on population time series that are often short and/or infrequently 
measured, and there are no regional or taxonomic groups within 
the LPI where the data is comprehensive enough to be certain 
of the real-world trend. Therefore, comparing sampled trends 
to LPI trends would tell us little about how the sampled trends 
might compare to reality. Second, the LPI uses non-linear trends 
that change slope and direction over time, so trends should be 
compared in a way that reflects this. Here, we use a modelling 
approach to overcome these challenges, based on thousands of 
datasets of synthetic population time series with variations in the 
underlying properties of the data to represent regional taxonomic 
groups in the real world and sampling from those datasets. We 
degraded the samples by randomly removing observations and 
adding observation error to resemble regional taxonomic groups 
in the Living Planet Database (LPD, the database underlying the 
LPI). We then compared the trends calculated from the samples 
with those from the complete datasets using the Jaccard distance 
metric (chosen using the distance measure selection method de-
scribed in Dove et al., 2022) and constructed a multiple regression 
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    |  3DOVE et al.

model to understand how the distance values are influenced by 
variations in properties of the data. Here, distance metrics can be 
thought of as a measure of trend accuracy. By selecting a thresh-
old value for accuracy and applying the model to the LPI, we were 
able to quantify the reliability of disaggregated LPI trends and 
determine the number of additional time series needed to meet 
the threshold. Finally, we modelled and compared three different 
solutions for reducing data deficiency: (a) tracking unstudied pop-
ulations for a decade to generate new time series for the LPD, 
(b) resampling previously-studied populations to update old time 
series in the LPD, and (c) gathering more time series from exist-
ing studies to add to the LPD. The results from this study can be 
used to focus data-gathering and data-collation efforts on the 
regions, taxa, and populations that would be of greatest benefit 
to improving our understanding of the state of global vertebrate 
biodiversity.

2  |  MATERIAL S AND METHODS

Figure 1 shows an overview of our methods, with each numbered 
step corresponding to a numbered subheading in the text.

2.1  |  Synthetic data generation

We first created simulated datasets to represent “real-world” re-
gional vertebrate groups for which the LPI calculates biodiversity 
trends. The LPI is often represented as a single global index trend, 
but can also be disaggregated into hierarchical groups: first into 
systems (terrestrial, marine, freshwater), then geographical realms 
within each system, and finally taxonomic groups within each 
realm. It is this lowest level of the hierarchy, the regional taxo-
nomic groups, which we simulated. From here on simulated re-
gional taxonomic groups will be referred to as datasets. The base 
units of the LPI, and of our synthetic datasets, are population time 
series, which we will refer to simply as populations. These pop-
ulations are grouped into species, and species are grouped into 
datasets.

Our procedure to simulate a dataset requires six parameters: 
(1) the total number of populations to simulate (set to 10,000), 
(2) the mean number of populations assigned to each species (set 
to 10), (3) the number of years (length of trend) to simulate (set 
to 50), (4) the mean of the population mean growth rates (μds), 
(5) the standard deviation of the population mean growth rates 
(variation among populations, σds), and (6) the mean of the popula-
tion standard deviations of the growth rate (process error, μη, that 
determines annual variation in growth rates within time series). 
Before determining parameter settings, we tested each parame-
ter individually for effects on trend accuracy. We did this by gen-
erating test datasets with a range of settings for the parameter 
being tested and keeping all other parameters fixed (see supple-
mentary figures for details), then followed the methods described 

in Sections 2.2–2.7 (below) to determine if and how trend accu-
racy was affected. The first parameter, total populations, affected 
trend accuracy only when greater than half of all populations in 
a dataset were sampled (see Figure  S1), a situation that is un-
likely for regional taxonomic groups in the LPD, as it is rare even 
at the species level (see taxonomic representativeness in McRae 
et al., 2017). The second parameter, the mean number of popula-
tions per species, had no effect on trend accuracy within the wide 
range of values we tested (see Figure S2). The third, trend length, 
did affect trend accuracy (see Figure  S3) and would therefore 
need to be set appropriately if adapting the model for a different 
indicator. However, it is relatively constant across regional taxo-
nomic groups in the LPD (all trends begin at 1970 and end at the 
most recent year for which there are observations in the database, 
e.g., 2020). Therefore, we set the first three parameters at fixed 
values for the “real-world” simulations. Parameters four through 
six are variable in the LPD and did affect trend accuracy in our test 
results, and were therefore set to vary in the simulations.

We modelled population time series using the stochastic expo-
nential model with process error:

where Nt is population size at year t, 1 + rt is annual growth rate 
(often referred to as lambda, or λ) at year t, and rt ~ N(μpop, �2

pop
)  

models uncorrelated process error (i.e., temporal variation in the 
growth rate that could be caused by, for example, uncorrelated en-
vironmental variation) by sampling each annual growth rate from a 
normal distribution. The population process error, η, is also sampled 
from a distribution (so different populations have different, but sim-
ilar levels of η), with σpop ~ Exp 

(
1

��

)
, where 1

��

 is the rate parameter. 
Consequently, there is a tendency towards larger values for σpop, and 
therefore higher levels of process error, as �� , the expected value of 
the distribution increases.

The mean of the normal distribution of population growth rates 
was itself drawn from a normal distribution, μpop ~ N(μspec, �

2
spec

). 
Thus, populations from a species will have similar but not identical 
underlying mean population growth rates representing perhaps dif-
ferences in environmental conditions between geographically iso-
lated populations of a given species. In turn, similar species were 
grouped together into datasets, and we assumed that species within 
taxonomic groups had underlying population growth rates that were 
drawn from an identical distribution, μspec ~ N(μds, �

2
ds

). Here, larger 
values for �ds lead to a broader range of underlying species growth 
rates, perhaps signifying broader species-specific variation in re-
sponses to drivers such as habitat change within a taxonomic group. 
Using this hierarchical approach therefore captures the similarity 
of time series within a species, and the similarity of time series be-
tween species within a taxonomic group.

Growth for each population was modelled for 50 years, start-
ing at a population size of 100. Populations were assigned to spe-
cies by randomly sampling from a pool of 1000 species labels, 
with replacement, resulting in a normal distribution of populations 
per species, pps ~ N(μpps, �

2
pps

), with μpps = 10 and σpps = 4.5. While 

(1)Nt+1 =
(
1 + rt

)
Nt ,
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4  |    DOVE et al.

F I G U R E  1  Modelling trend accuracy in the LPI: an overview. This figure illustrates the methodology used in this study. The numbered 
boxes correspond with the numbered steps in the methods section below. Values given in the figure are for illustration and are not intended 
to represent actual inputs or results.
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    |  5DOVE et al.

populations are unlikely to be normally distributed across species 
in the real world (one would expect more rare species than com-
mon species), simulations confirmed that our modelling approach 
is robust against distributional assumptions for this parameter (see 
Figure S2).

2.2  |  Observation error

The variation in population growth rates modelled above assumes 
all variation is due to process error. However, time series in the LPD 
are based on population estimates, which can be assumed to include 
some level of observation error due to for example, species misi-
dentification, non-detection, and counting errors. This observation 
error is not accounted for in the LPI, but may affect trend reliability. 
Observation error, ɛ, can be calculated using the coefficient of vari-
ation (cv), defined as

where μab and σab are the mean and standard deviation (respec-
tively) of the abundance values. Since data in the LPD were col-
lected using a variety of methods, and ɛ is not recorded in the 
database, we chose a range of ɛ consistent with values reported for 
other vertebrate surveys (Fryxell et al., 2014; Westcott et al., 2012; 
Zylstra et al., 2010). We determined through simulations that there 
is no effect of increasing observation error on trend accuracy 
(Figure S4), therefore an approximate range of ɛ should suffice. For 
each simulated population time series, ɛ was randomly selected 
from a normal distribution with μɛ = 0.15 and σɛ = 0.1. We modelled 
observed abundances of a population at a time point, Zt, as

where Nt is the population size at time t taken from Equation (1) and ϕt 
is a normally distributed variable, ϕt ~ N(0, �2

obs
), with

where σobs is the standard deviation of ϕt. A value for μɛ of 0.1 (10%) 
would result in approximately 68.2% of observations falling within 
10% of their corresponding simulated ‘true’ values and 99.7% of simu-
lated observations falling within 30%.

We chose a normal distribution for ϕt because we assumed 
there to be an equal chance of underestimating or overestimat-
ing population abundance. The LPI uses a mix of survey types and 
estimation methods and there does not seem to be conclusive ev-
idence of whether one type of bias is dominant (e.g., Johansson 
et al., 2020; Kiffner et al., 2022; Lubow & Ransom, 2016; Manning 
& Goldberg, 2010).

2.3  |  Data degradation

Observed versions of the datasets were then randomly degraded 
to resemble the varied quality of sampled real-world data present 
within the LPD. The length (number of years from first to final obser-
vation) for each degraded time series within a dataset was randomly 
chosen by sampling from a Poisson distribution. We determined 
through simulations that varying the number of observations does 
not affect trend accuracy at a given time series length, so we fixed 
the mean number of observations at half of the mean time series 
length (rounded up to the nearest integer). The starting years for 
each time series were assigned randomly. Time series were then cut 
to their assigned length, and half of the remaining observations were 
randomly removed.

2.4  |  Sampling

Populations were randomly sampled from each dataset, without 
replacement until the desired sample size n was reached. This was 
repeated to obtain 20 random samples of the same size for each 
dataset. Values for four of the six dataset parameters described in 
Section 2.1 may be different for samples than for the dataset they 
are selected from, and may also vary between samples: the mean 
number of populations per species, the mean and standard deviation 
of population mean growth rates, μds and σds, and the mean of popu-
lation standard deviations of the growth rate, μη.

2.5  |  Calculation of sampled trends

Non-linear index trends were calculated from each sample, follow-
ing the LPI method described in McRae et al. (2017). Time series with 
six or more data points were modelled using a generalized additive 
model (GAM), as described in Collen et al.  (2009), with a Gaussian 
(normal) distribution, smoothed by a thin plate regression spline, 
with the number of knots set to half the number of observations 
(rounded down to the nearest integer). Time series that had fewer 
than six data points were interpolated using the chain method (Loh 
et al., 2005), as described in Collen et al. (2009). The chain method 
imputes missing values using log-linear interpolation by

where N is the population estimate, i is the year for which the value is 
to be interpolated, p is the preceding year with an observed value, and 
s is the subsequent year with an observed value. For all populations, 
whether interpolated or modelled by a GAM, species indices were 
formed by a three-step process. First, population sizes were converted 
to annual rates of change by

(2)cv� =
�ab
�ab

,

(3)Zt =

⎧
⎪⎨⎪⎩

Nt+�t , ifNt+�t ≥0;

0, otherwise,

(4)�obs = Nt × ��,

(5)Ni = Np

(
Ns

Np

)[(i−p)∕(s−p)]
,

(6)
dt = log10

(
Nt

Nt−1

)
,
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6  |    DOVE et al.

where N is the population estimate and t is the year. Second, average 
growth rates were calculated for each species by

where nt is the number of populations in a given species, dit is the 
growth rate for population i at year t, and dt is the average growth rate 
at year t. Growth rates were capped at [−1:1]. Finally, index values were 
calculated by.

where I is the index value and t is the year. Equations (5–8) are from 
Collen et al. (2009).

2.6  |  Calculation of the ‘true’ trend

A non-linear index trend was calculated for each complete, un-
degraded dataset (without observation error), following McRae 
et al.  (2017), as for the sampled trends. However, the undegraded 
datasets had no missing values, therefore modelling each time series 
using the chain method or a GAM was unnecessary, and that step 
was skipped.

2.7  |  Comparison of trends

We selected an appropriate distance measure to compare sam-
pled trends with ‘true trends’ using the selection process de-
scribed in Dove et al. (2022). Of the distance measures deemed 
appropriate, we chose the Jaccard distance because it uses a 0–1 
scale, making it easier to interpret. The Jaccard distance is cal-
culated as

(from Cha, 2007), where Pt and Qt are index values from two trends 
P and Q at time point t, and n is the number of time points. From here 
on, any value calculated by applying the Jaccard distance to compare 
sampled versus ‘true’ trends will be referred to as a trend deviation 
value, or TDV.

We used TDV here as a measure of trend accuracy, but it is in fact 
the complement of accuracy (a perfectly accurate trend would yield 
a TDV of zero); lower TDV means higher accuracy. Furthermore, 
when referring to TDVs of simulated trends, we used the term ‘trend 
accuracy,’ but when referring to TDVs of LPI trends, we used the 
term ‘trend reliability.’ This is because TDVs for simulated trends 
were measured, while TDVs for LPI trends were estimated based 
on a model. Trend reliability is thus a measure of expected accuracy 
based on underlying data sufficiency or deficiency, but should not 

be considered a proxy for accuracy. In other words, a data deficient 
trend may be accurate but we cannot rely on it to be so.

2.8  |  Generation of datasets

We generated 3000 datasets (each consisting of 1000 species and 
10,000 populations), with each dataset sampled 20 times, result-
ing in 60,000 samples. Values for mean time series length, μds, σds, 
and μη were randomly selected from uniform distributions, while 
sample size was randomly selected from a log-uniform distribution, 
ln(SS) ~ U(ln[a], ln[b]), where SS is sample size and a and b are the min-
imum and maximum values, respectively (log-uniform was chosen 
to ensure the model would be robust at small sample sizes, as most 
datasets in the LPD are small). Ranges for the distributions were 
chosen to ensure that parameter ranges in the samples would be 
broader than the ranges present in the LPD (Table 1). Regional taxo-
nomic groups from the LPD with fewer than 20 populations were 
excluded from parameter range calculations to avoid extreme outli-
ers. We set the minimum sample size to 50 because smaller samples 
rarely generated a complete trend, and the maximum to 10,000 to 
improve predictions of the effects of sample size increases.

2.9  |  Multiple regression model

We built a multiple linear regression model to understand how 
variables in the simulated data determine trend accuracy (TDV). 
First, we removed all simulated datasets in which the mean of the 
sample parameter values fell outside of LPD parameter ranges 
(individual replicates were allowed to fall outside of LPD ranges), 
leaving 2361 datasets, or 47,220 samples. We then randomly se-
lected 67% of the remaining datasets (1581 datasets) to train the 

(7)dt =
1

n

∑nt

i=1
dit,

(8)It = It−1 × 10dt , I0 = 1,

(9)dJaccard =

∑n

t=1

�
Pt−Qt

�2
∑n

t=1
P2
t
+

∑n

t=1
Q2
t
−

∑n

t=1
PtQt

TA B L E  1  Parameters with value ranges for simulated datasets, 
degraded samples and the LPD.

Independent 
variable

Range in 
datasets

Range in 
samples

Range in 
LPD

Sample size — 50–9975 2–3000

Mean length of time 
series

6.0–38 5.5–39 6.0–39

Mean of Pop. mean 
growth rates, μds

−0.13–0.12 −0.25–0.31 −0.19–0.16

St. dev. of Pop. 
mean growth 
rates, σds

0.074–0.59 0.097–0.83 0.12–0.63

Mean of Pop. 
growth rate St. 
Dev., μη

a

0.049–1.17 0.13–1.06 0.16–0.89

aThis parameter is modelled as process error in the simulated 
datasets, but in the degraded samples it represents process error and 
observation error combined.
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    |  7DOVE et al.

model. The other 33% (780 datasets) we set aside for testing the 
model.

2.10  |  Model validation

The residuals of the combined data used to train the model were ap-
proximately normally distributed. Likewise, the residuals appeared 
homoscedastic when plotted against fitted values. We compared the 
actual TDV of each sample in the testing datasets to the predicted 
TDV for that sample calculated by the model, then calculated the 
RRMSEP (relative root mean squared error of prediction), defined as

where RMSE is the root mean squared error and SD is the standard 
deviation of the actual TDVs, and

where yi is the ith actual TDV, ŷ is the predicted TDV, and n is the num-
ber of samples.

2.11  |  Maximum trend deviation value

We set a maximum predicted TDV as a threshold that regional taxo-
nomic group trends within the LPI should not exceed to be considered 
reliable. First, we built a linear regression model of the square root of 
TDV from our training datasets, with the natural log of sample size as 
the predictor variable, since sample size is the only user-controlled 
variable within the LPD. Every regional taxonomic group within the 
LPD represents a single sample from the real world; therefore, we 
were not interested in the mean TDV achieved by each dataset, but 
in the range of possible TDV values, especially the upper part of the 
range (the least accurate sample trends from each dataset).

We used 10,000 bootstrap estimations of the mean of the TDV 
from each dataset to calculate the 90% confidence intervals using 
the bias corrected and accelerated bootstrap interval (BCa) method, 
also known as the adjusted bootstrap percentile method. The BCa 
method is a non-parametric method that does not assume the data 
is normally distributed (the TDV values have a beta distribution) and 
corrects for bias and skewness in the distribution of the mean es-
timates. We plotted the curve of the square root-log model of the 
upper 90% confidence interval of TDV in relation to sample size on a 
(non-log) graph of TDV versus sample size (Figure 2).

Increasing sample size should naturally lead to more desirable 
TDV but it is costly in terms of time and money to increase sample 
size, and it may also be prudent to put the resources elsewhere. It 
was therefore important to choose a maximum TDV that reflects 
these trade-offs. To choose a maximum TDV, we used a method 
called the concordance probability method (CZ) (Liu,  2012). We 
adapted CZ from the field of biomedical research, where it is often 
necessary to specify a cut-off value to discriminate between positive 
and negative results from screening or diagnostic tests (Liu, 2012). 
First, a receiver operating characteristic (ROC) curve is built, plotting 
the rate of true positives (sensitivity) against the rate of false posi-
tives (1 − specificity). The idea is to find the point on the curve that 
maximizes both sensitivity and specificity. The CZ method simply 
finds the point where their product is maximized.

By considering the square root-log model of the upper 90% con-
fidence interval of TDV versus sample size (Figure 2) as equivalent 
to an ROC curve, we applied the CZ method to find the point on the 
curve where TDV and sample size are minimized. This is the point 
where we should achieve maximum value from the data. Further right 
along the curve, increasing the sample size would give a smaller im-
provement in trend reliability and is therefore not cost- or resource-
effective. Since an ROC curve is intended for binary classification, 
the CZ method assumes that both sensitivity and specificity are on 
a 0–1 scale. TDV already ranges from 0 to 1, so we set sensitivity as 
1–TDV. We normalized sample size to a 0–1 scale by converting it to 
a proportion of the complete dataset (dividing by the total number of 

(10)RRMSEP = RMSE∕SD,

(11)RMSE =

� ∑n

i=1

�
yi− ŷ

�2
n

,

F I G U R E  2  Trend deviation value (TDV) 
versus sample size. This plot includes only 
the upper 90% confidence interval of TDV 
from each simulated dataset. The curved 
blue line is the square root-log model of 
the plotted values. The vertical red line 
intersects the square root-log curve at the 
optimal cut-point.
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8  |    DOVE et al.

time series in the dataset). Since all datasets were the same size, the 
relationship between TDV and sample size was not altered by the 
conversion to a proportion. Specificity was then 1–sample size. The 
optimal cut-point on the curve is defined as

where Se is sensitivity, Sp is specificity, and c is any cut-point.

2.12  |  Minimum sample size for regional 
taxonomic groups

Minimum sample size was calculated by rearranging the formula 
for the multiple regression model to solve for sample size and re-
placing the TDV variable in the formula with the cut-off value de-
termined above. Values for the other variables in the formula were 
determined separately for each regional taxonomic group from the 
LPD, as follows: populations with fewer than two data points were 
removed, missing data was interpolated using the chain method 
(Collen et al., 2009), then the mean growth rate, μpop, was calculated 
for each population. Growth rates were capped at [−1:1] before tak-
ing the mean, as in the LPI (McRae et al., 2017). Next, μds, σds, and 
μη were calculated. The mean time series length was calculated by 
dividing the total number of observations (after interpolation) by the 
total number of populations (excluding those with fewer than two 
data points). The calculated values were then placed into the model 
formula to determine minimum sample size.

2.13  |  Assigning reliability ratings to regional 
taxonomic groups

The actual number of populations in each regional taxonomic group 
was divided by the minimum sample size and multiplied by 100 to 
determine the percentage of the minimum sample size actually met 
by each group. Groups achieving 100% or greater were designated 
as reliable, those achieving between 50% and 100% were desig-
nated as data deficient, and those achieving <50% were designated 
as severely data deficient.

2.14  |  Correlations between reliability rating and 
LPI relative weighting

The LPI uses a weighting system to account for the estimated num-
ber of species in each regional taxonomic group to reduce represen-
tational bias (McRae et al., 2017). Each regional taxonomic group has 
a relative weighting assigned to it, which is used in the calculation of 
aggregated indices. We used the Pearson's product moment correla-
tion coefficient test to determine if there was any significant correla-
tion between percentage of the minimum sample size achieved for 
each regional taxonomic group and the assigned relative weightings 

in the LPI for each group. The test was performed on the combined 
dataset as well as each individual system.

2.15  |  Modelling potential solutions

We used the model to simulate three different methods of improv-
ing trend reliability in the LPD: (A) tracking unstudied populations 
for 10 years, (B) resampling previously-studied populations, and (C) 
gathering more time series from existing studies. First, we gener-
ated 50 control datasets (as described in Sections  2.1–2.7) with a 
sample size of 200 and mean time series length of 14 (similar to the 
median values for regional taxonomic groups in the LPI of 180 and 
13, respectively). We set μds to 0, σds to 0.30, and μη to 0.40. Using 
the same parameters, we then generated groups of 50 datasets with 
each of the following changes: group A had an extra 200 popula-
tions (total sample size: 400), but with observations only for the final 
10 years, to simulate tracking additional populations for 10 years; 
group B had the final observation revealed on every sampled, de-
graded time series (total sample size: 200) to simulate resampling 
previously-studied populations; group C had an extra 200 randomly 
sampled populations (total sample size: 400) to simulate adding ex-
isting data to the LPD.

2.16  |  Coding and data

All trends for synthetic data were produced using original 
code designed to reproduce the functionality of the rlpi pack-
age (Freeman et al.,  2021). All coding was done in R (R Core 
Team,  2021) using RStudio (RStudio Team,  2022). Figure  1 was 
produced using Inkscape (Inkscape Project, 2020). All other fig-
ures were produced in R (R Core Team, 2021) using the ggplot2 
package (Wickham, 2016). Population time series used to evaluate 
reliability of LPI trends are from the LPD (McRae et al., 2016). All 
original code is available on GitHub at https://github.com/Shawn​
Dove/DD_LPI.

3  |  RESULTS

3.1  |  Regression model

The regression model contains five independent variables 
(Tables 1 and 2). Together they describe 62% of the variation (ad-
justed r-squared: .62) in the TDV associated with sampled trends, 
and with F(5, 29,385) = 9686, p < .001. All independent variables 
are statistically significant predictors, with p < .001 (Table  2). 
Interaction terms are also statistically significant but do not in-
crease the adjusted r-squared of the model, so we left them out. 
RRMSEP is 0.231. Sample size is the most important variable af-
fecting trend accuracy. As expected, higher sampling leads to a 
lower TDV (higher accuracy). The other variables all have smaller 

(12)max(CZ), CZ(c) = Se(c) × Sp(c),
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effects on the variation in TDV. We found a positive effect of μds, 
the mean growth rate for a taxonomic group, on the TDV and this 
is because there are no upper bounds on population size, whereas 
all populations are bounded by zero. Hence declining populations 
tend to have less variation across time series compared to grow-
ing populations. Increasing standard deviation of the mean growth 
rate (σds) leads to an increase in the TDV, because higher variation 
in growth rates among populations effectively lowers the signal-
to-noise ratio. Process error leads to more variation in growth 
rates within populations; therefore increasing ��, the parameter 
that modulates the strength of process error, also leads to higher 
values for TDV. Finally, longer time series lead to generally lower 
TDV because they provide data for each population over a larger 
portion of the overall trend length.

Much of the unexplained variance from the model is due to ran-
dom sampling. We confirmed this by remaking the model using the 
sample means, which resulted in an adjusted r-squared of .87. Using 
the square root of TDV instead of the log further increased the ad-
justed r-squared to .93. This was not the case for the model using 
the individual samples, where the log resulted in a higher adjusted 
r-squared than the square root.

3.2  |  Maximum trend deviation value

Using the concordance probability method to select a cut point on 
the square root-log model of the 90% upper confidence interval of 
TDV versus sample size, we found a maximum TDV value of 0.176. 
After placing this value into the model equation and reorganizing 
to solve for sample size, we applied the model to the LPI to find the 
minimum number of populations needed for each regional taxo-
nomic group.

3.3  |  Minimum sample size

The number of populations needed to achieve the TDV thresh-
old for a reliable trend varies across taxonomic groups and realms 
(Table  3), but only weakly across systems, with medians of 269, 
341, and 263 for terrestrial, freshwater, and marine systems, 

respectively. Fewer populations are needed in the global north 
(median: 213) than in the global south (median: 354). Birds show 
the highest variability, having both the smallest number of popula-
tions needed for any group (freshwater Nearctic birds: 19), and the 
largest (freshwater Afrotropical birds: 9081; however, this value 
is an extreme outlier—see Discussion). Mammals have the small-
est sample size requirements, with a median of 165, while fishes 
have the largest, with a median of 465. Reptiles and amphibians 
(combined) and birds fall in between, with medians of 274 and 286, 
respectively.

3.4  |  Trend reliability

Reliability varies strongly across realms, taxonomic groups, and 
systems (Figures 3 and 4). Terrestrial trends are the most reliable 
and freshwater trends the least. Terrestrial and freshwater trends 
are more reliable in the global north than in the global south, ex-
cept for terrestrial reptiles and amphibians. Marine bird trends are 
more reliable in temperate areas than the tropics, while marine 
fish trends are more reliable in tropical waters than polar. Globally, 
bird trends are the most reliable but are nonetheless poor in the 
tropics, especially Africa. Reptile and amphibian trends are data 
deficient everywhere except the terrestrial Neotropical realm, and 
marine and freshwater mammal trends are data deficient every-
where (although marine IndoPacific mammals are very close to the 
threshold at 97%).

The regional taxonomic groups with the greatest potential to af-
fect the reliability of aggregated LPI trends are exclusively tropical 
(Figure 5), due to a combination of high relative weighting and low 
reliability scores. The eight groups of greatest concern include five 
freshwater and three terrestrial groups, but no marine groups. All 
are from the tropics. Fishes, birds and reptiles and amphibians are 
represented, with mammals absent. Overall, the reliability scores of 
regional taxonomic groups do not show a statistically significant cor-
relation with their relative weightings in the LPI, r(55) = .085, t = 0.64, 
p = .53. Likewise, there are no statistically significant correlations 
for individual systems, with terrestrial r(13) = −.40, t = −1.56, p = .14; 
freshwater r(18) = −.09, t = −0.39, p = .70; and marine r(20) = .40, 
t = 1.95, p = .066.

Coefficient Estimate
Standard 
error

Beta 
coefficient t value

p 
value

(Intercept) 3.957 0.04406 — 89.81 <.001

ln (Sample size) −0.8460 0.004441 −0.6860 −190.5 <.001

ln (St. dev. of mean 
growth rate, σds)

0.7569 0.01630 0.1672 46.42 <.001

Mean growth rate, μds 8.057 0.1454 0.1989 55.42 <.001

Mean of population St. 
dev., μη

1.503 0.02224 0.2426 67.57 <.001

Mean time series length −0.03890 0.0007336 −0.1917 −53.02 <.001

TA B L E  2  Multiple regression model of 
ln(TDV).
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10  |    DOVE et al.

TA B L E  3  The trend deviation value, the current number of populations in the LPD, the minimum number of populations that would meet 
the reliability threshold, and the number of additional populations that must be added to achieve the reliability threshold for each regional 
taxonomic group in the LPD. Note that the trend deviation values here were calculated using the model formula and therefore occasionally 
fall outside of the 0–1 range of the Jaccard distance the TDV is based on.

System Realm Taxon TDV
Current sample 
size

Minimum sample 
size

Additional pops 
needed

Terrestrial Afrotropical Birds 0.444 330 983 653

Mammals 0.036 794 122 0

Reptiles & 
Amphibians

0.477 51 166 115

IndoPacific Birds 0.085 956 406 0

Mammals 0.060 1581 441 0

Reptiles & 
Amphibians

0.867 81 533 452

Palearctic Birds 0.030 988 122 0

Mammals 0.019 2104 149 0

Reptiles & 
Amphibians

0.373 55 134 79

Neotropical Birds 0.085 640 269 0

Mammals 0.161 314 283 0

Reptiles & 
Amphibians

0.161 238 214 0

Nearctic Birds 0.024 514 49 0

Mammals 0.110 686 394 0

Reptiles & 
Amphibians

0.564 129 511 382

Freshwater Afrotropical Birds 6.483 128 9081a 8953a

Mammals 0.521 15 54 39

Reptiles & 
Amphibians

0.729 18 96 78

Fishes 0.925 149 1058 909

IndoPacific Birds 0.172 388 378 0

Mammals 0.359 22 51 29

Reptiles & 
Amphibians

0.269 114 188 74

Fishes 0.334 367 781 414

Palearctic Birds 0.062 973 284 0

Mammals 0.203 188 223 35

Reptiles & 
Amphibians

0.383 90 225 135

Fishes 0.183 580 607 27

Neotropical Birds 0.331 161 340 179

Mammals 2.789 22 576 554

Reptiles & 
Amphibians

0.824 103 638 535

Fishes 0.125 2217 1482 0

Nearctic Birds 0.042 101 19 0

Mammals 0.352 23 52 29

Reptiles & 
Amphibians

0.280 280 484 204

Fishes 0.090 752 342 0
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    |  11DOVE et al.

3.5  |  Modelling potential solutions

Adding 200 additional time series to the sample with observations 
only in the final 10 years (solution A; equivalent to tracking 200 un-
studied populations for 10 years) improved the mean TDV by 12%, 
while revealing the final year observation (solution B; equivalent to 
resampling previously-studied populations) for every population im-
proved the median TDV by 11% (Figure 6). By contrast, simply dou-
bling the sample size (solution C; equivalent to randomly adding 200 
existing time series to the LPD) improved the median TDV by 50%. 
This solution shows a statistically significant improvement in trend 
accuracy compared to the control group (p < .001).

4  |  DISCUSSION

Understanding the changing global state of biodiversity is crucial 
to making good policy and conservation decisions and ‘bending the 
curve’ of biodiversity loss (Mace et al.,  2018). Acquiring accurate 
and comprehensive data is crucial, but the first step is to answer 

the question: what do we actually know? The present study quan-
tifies the reliability of trends for each regional taxonomic group in 
the Living Planet Index and estimates the number of population time 
series needed to meet a standard of expected accuracy.

We used synthetic population time series datasets to construct 
a multiple regression model of trend accuracy by comparing trends 
of degraded samples with the trends of the full, undegraded data-
sets using a distance measure (Figure  1). We applied the model 
to regional taxonomic groups in the Living Planet Database to re-
veal that the majority need additional data for their trends to be 
considered reliable. Data deficiency is a problem globally but is 
more pronounced in the tropics. This is consistent with the anal-
ysis of geographical representativeness in McRae et al.  (2017), 
which tested proportional representativeness of biodiversity 
compared to the global dataset and found that species groups in 
tropical realms are underrepresented. Bird trends are the most 
reliable and reptiles and amphibians the least. This is consistent 
with the picture of species representation in the LPD presented 
in McRae et al.  (2017) and is unsurprising given that monitoring 
and data collection for birds is more extensive than for reptiles 

System Realm Taxon TDV
Current sample 
size

Minimum sample 
size

Additional pops 
needed

Marine Temperate Atlantic Birds 0.044 581 112 0

Mammals 0.379 138 342 204

Reptiles & 
Amphibians

0.916 46 323 277

Fishes 0.048 2170 465 0

Tropical Atlantic Birds 0.479 225 733 508

Mammals 1.299 17 180 163

Reptiles & 
Amphibians

0.937 90 649 559

Fishes 0.040 3111 539 0

Arctic Birds 0.189 110 120 10

Mammals 0.330 49 103 54

Fishes 1.820 29 458 429

South temperate Birds 0.047 1361 288 0

Mammals 0.426 30 85 55

Fishes 0.181 230 238 8

IndoPacific Birds 0.038 5392 874 0

Mammals 0.181 88 91 3

Reptiles & 
Amphibians

0.623 81 361 280

Fishes 0.069 1059 347 0

Pacific temperate Birds 0.127 146 100 0

Mammals 0.292 117 213 96

Reptiles & 
Amphibians

6.528 2 143 141

Fishes 0.060 706 200 0

aMinimum sample size for freshwater Afrotropical birds is an extreme outlier. See Section 4 for explanation.

TA B L E  3  (Continued)
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12  |    DOVE et al.

and amphibians (Oliver et al.,  2021; Scheele et al.,  2019), espe-
cially with the rise of citizen science (Oliver et al., 2021). However, 
many of our reliability scores differ from what would be expected 
given McRae et al.'s (2017) analysis of taxonomic representative-
ness. McRae et al. (2017) found that all Nearctic taxonomic groups 

are overrepresented, yet in our analysis Nearctic terrestrial and 
freshwater reptiles and amphibians as well as Nearctic freshwater 
mammals score as data deficient. The starkest differences occur 
in the marine system, where mammals and marine reptiles are 
overrepresented by species in all realms (except South temperate 

F I G U R E  3  Proportion of the total 
amount of time series data needed to 
achieve the trend reliability threshold 
that each regional taxonomic group in the 
LPD currently contains. A score of 100% 
or greater means that group already has 
enough data to produce a reliable trend. A 
white box refers to a group that meets the 
reliability threshold, while a colored box 
means the threshold has not been met. 
The further the group is from meeting 
the threshold, the more intense the color. 
A grey box refers either to a group that 
could not be evaluated because there was 
too little data (South temperate marine 
reptiles) or due to an invalid realm-taxon 
combination (there are no marine reptiles 
in the Arctic).

F I G U R E  4  Reliability of regional 
taxonomic group trends in the LPI, 
grouped by system, realm, and taxon. 
Map (a) shows the terrestrial (top) and 
freshwater (bottom) results. Map (b) 
shows the marine results. The results 
box outlines are coloured to match their 
corresponding realms on each map. 
Reliability scores are binned into three 
categories, according to the number of 
time series in the LPD relative to the 
minimum sample size needed to achieve 
the TDV threshold. A check mark means 
that group has at least 100% of the 
minimum sample size and is considered 
reliable, a dash means it is data deficient 
(50%–99%), and an X mark means it is 
severely data deficient (<50%).
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    |  13DOVE et al.

reptiles, which are not represented at all) but which we found to 
be data deficient in all realms. In contrast, marine fishes are un-
derrepresented by species numbers (McRae et al., 2017), but we 
found that in all except the Arctic realm marine fishes are data-
rich enough to produce reliable trends. These differences strongly 
suggest that the percentage of species represented does not tell 
the whole story.

Geographical and taxonomic biases in the distribution of data in 
the LPI are well-known (McRae et al., 2017), and reflect underlying bi-
ases in the availability of data (Boakes et al., 2010; Collen et al., 2008; 
Yesson et al., 2007). McRae et al. (2017) introduced a weighting sys-
tem to the LPI, which accounts for the estimated number of species 
in each regional taxonomic group to reduce representational bias. 

One problem with this is that most of the world's vertebrate species 
are located in the tropics (Collen et al., 2008; McRae et al., 2017), 
which are underrepresented in the LPD (McRae et al.,  2017). Our 
concern was that if trends from these areas are the least reliable 
due to data deficiency, then the LPI could have simply replaced one 
problem, representation bias, with another: overreliance on data de-
ficient trends. Indeed, our analysis shows that all regional taxonomic 
groups with a high relative weight and low reliability rating (bottom 
right of Figure 5) are tropical. Surprisingly, though, we did not find 
a statistically significant negative correlation between reliability of 
trends and their relative weights in the LPI. This also holds true for 
the terrestrial and freshwater systems when considered separately 
(the marine system actually shows a positive correlation) and is 

F I G U R E  5  Trend reliability of regional 
taxonomic groups in the LPD (measured 
as the percentage of populations in the 
LPD relative to the number required to 
achieve the TDV threshold) versus the 
relative weighting applied to each group 
when calculating aggregated LPI trends. 
Only groups with reliability ratings below 
the threshold (<100%) are included here. 
To determine the groups having the 
strongest negative effect on the reliability 
of aggregated LPI trends, we calculated 
relative weight × (100 − reliability) and 
labelled the groups with a value higher 
than 1.

F I G U R E  6  The effect on trend accuracy of potential solutions to data deficiency in LPI regional taxonomic groups. The control group 
has a sample size of 200 and mean time series length of 14. Group A has an additional 200 time series with observations only in the final 
10 years of the index to simulate a 10-year data blitz. In group B, the final observation has been added back in for every time series to 
simulate resampling of previously-studied populations. Group C is like the control group, but the sample size has been doubled to 400 to 
simulate adding additional pre-existing studies to the LPI. All other parameters are fixed – μds: 0; σds: 0.3; μη: 0.4; populations per species: 10; 
trend length: 50; μɛ: 0.15; σɛ: 0.1. Each box represents the mean values of 20 datasets, with 20 samples per dataset.
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14  |    DOVE et al.

consistent with Nori et al. (2020), who found that species richness 
and knowledge gaps are not always correlated.

According to our model, the size of a dataset, that is, the number 
of species or populations existing in the real world for any regional 
taxonomic group, is unimportant to the calculation of trend reliabil-
ity for a given sample, as long as the sample represents less than 
half of the time series in the dataset (Figure S1). In other words, it is 
the absolute number of populations represented in the sample that 
matters, regardless of whether that sample represents 1% or 50% 
of the total populations in a regional taxonomic group. There are 
two principles working to cause this seemingly counterintuitive ef-
fect. First, the relationship between population size and the sample 
size needed to reach a desired level of precision is logarithmic and 
becomes more extreme at lower levels of precision (Israel, 1992). 
This means that a small sample size should be able to estimate a 
large population almost as well as it can estimate a small popula-
tion. Second, there are limitations to the level of trend accuracy 
that can be achieved, regardless of sample size, because most time 
series in our simulated samples (and in the LPD) are much shorter 
than the length of the trend being estimated. Short time series tend 
to produce more extreme trends (Leung et al., 2020) and are less 
likely to accurately reflect long-term trends for individual popula-
tions (Wauchope et al., 2019). They also reduce the number of ob-
servations used for the calculation of group trends. For example, 
even if the mean time series length was 50% of the length of a 
trend (mean time series lengths for all regional taxonomic groups 
in the LPD are much shorter than that), if those time series were 
randomly distributed in time, only about 4% of them would begin 
at the first year and about 4% would end at the final year. Thus, the 
crucial early and final years of the trend would depend on only a 
fraction of the observations that the sample size indicates. This ran-
domized distribution of time series across the trend results in less 
accurate trends than would be possible if observations were evenly 
distributed across time points (confirmed through simulations—see 
Figure  S5). This issue is slightly complicated in the LPD. On one 
hand, the database begins 20 years earlier than the index, giving 
time for the number of observations to increase before measur-
ing the trend. On the other hand, there is a delay in getting recent 
studies into the LPD (McRae et al., 2017), reducing the number of 
observations in the final years even more than a random distribu-
tion would suggest (see Figure S6).

This dramatic fall-off of observations suggests that more data is 
needed for the LPI to reliably reflect changes in the status of global 
vertebrate biodiversity over the past decade. While a reduction in 
the delay involved in getting new studies into the LPD might help, 
increasing the number of populations in the LPD is only possible to 
the extent that the necessary data exists. Therefore, we simulated 
two potential ways of generating new data to improve trend reli-
ability: (A) a global data blitz, with researchers coordinating to track 
as many unstudied populations as possible for 10 years to generate 
new time series, and (B) resampling already-studied populations to 
uncover recent changes and lengthen existing time series (Figure 6). 
Both solutions had a slight but non-significant positive effect on 

trend accuracy but were far less effective than adding existing data 
(solution C; as is currently done for the LPD). It is likely that both 
solutions (data blitz and resampling) have a greater effect on the ac-
curacy of the final portion of the trend than on the overall trend, but 
further study would be required to be certain. Either way, resam-
pling would be more efficient than a data blitz, as the same improve-
ment could be achieved in 1 year instead of 10. In the long term, 
tracking additional populations is essential to completing our picture 
of biodiversity change. Natural stochasticity means that short time 
series are of limited value in generating reliable trends (Wauchope 
et al., 2019), so tracking additional populations takes time to pay div-
idends. Nonetheless, overcoming indicator biases and data deficien-
cies will require a balanced global profile of populations, counted 
regularly to ensure changes can be detected quickly.

There is another limitation underlying the LPI, which cannot be 
solved by generating new data. All trends in the LPI begin in the year 
1970, which is set as the base year for calculating the index values. 
Past trends can only be determined by existing data; therefore, while 
there may be some currently inaccessible data that either could be 
shared or made available for confidential storage in the LPD (Saha 
et al., 2018), there are likely to be severe limitations to relieving data 
deficiency for the early years of the LPI. However, other potential 
solutions could be examined in future studies. One would be to 
begin the index at a later year in which there is more data available 
(e.g., 1990). Another would be to change the base year for calculat-
ing the index to a more data-rich year, thus increasing the uncer-
tainty around the early years of LPI trends (Gregory et al., 2019). The 
downside is that the interpretation of trends would be different. The 
LPI would no longer measure change in global vertebrate biodiver-
sity relative to 1970, but relative to another year, and much of the 
change currently recorded in the index would have already occurred 
before the base year. A different approach would be to use other 
kinds of data, such as log books and catch records (e.g., Josephson 
et al.,  2008), genetics (e.g., Beaumont,  2003), trade records (e.g., 
Collins et al.,  2020), and land use/climate change modelling (e.g., 
Visconti et al., 2016) to infer historical abundance estimates for pop-
ulations where no monitoring took place.

Our regression analysis of the simulated data highlights some 
rather straightforward results—more data in terms of sampled pop-
ulations and/or longer time series leads to higher reliability of trends, 
and more variation in population growth rates within and between 
populations leads to lower reliability. However, we also found that 
regional taxonomic groups that show positive trends might need 
more data (higher sampling, longer time series) than those that are 
declining. The corollary is that fewer samples might be required to 
obtain reliable trend estimates for declining groups, but this result 
also has implications for any biases in species selection. For example, 
monitoring efforts tend to focus on species at higher risk of extinc-
tion (Scheele et al., 2019). Many amphibian populations in the LPD 
were tracked because they were declining due to the devastating 
disease chytridiomycosis. This could negatively bias trends and falsely 
reduce variance in growth rates, leading the model to overestimate 
reliability because it assumes that tracked populations are randomly 
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selected. On the other hand, Murali et al. (2022) found that popula-
tion coverage in the LPD is biased towards protected areas, where 
species are less likely to be threatened, therefore potentially causing 
a positive bias in LPI trends. Our results also imply that any biases 
towards or against species that have high/low process error, that is, 
have very variable annual growth rates, could potentially also bias 
our estimates of trend reliability. However, our analysis of the sim-
ulated data suggests overall sampling intensity far outweighs the 
other factors included in our model, not least because as sampling 
number increases so does the coverage of the variability in the tax-
onomic group.

Other biases in the LPD could also have important effects on 
our estimates of reliability. Time series are non-randomly distrib-
uted across time and/or space in the LPD. For example, while some 
biodiversity hotspots (e.g., tropical Africa) are poorly sampled, 
others, especially islands (e.g., Madagascar), are well-studied (Nori 
et al.,  2020), and this may bias entire realms. In the Afrotropical 
realm, six (12%) of the 51 terrestrial reptile and amphibian time se-
ries in the LPD are from Round Island (a tiny uninhabited island near 
Mauritius) and more than half (57%; 29/51) are from a single study 
that took place at a reserve in Madagascar over a nine- year pe-
riod; only seven (14%) are from mainland Africa, and of the seven, 
four are from a single study at a reserve in Nigeria. In this case, the 
model likely severely underestimates the amount of data needed 
to get a reliable trend. Valdez et al.  (2023) found that a coarser 
sampling resolution increases the ability to detect global biodiver-
sity change by reducing the effects of outlier population trends. 
Sampling resolution biases such as that in the Afrotropical realm 
will surely decrease trend reliability at a given sample size. While 
the Afrotropical realm may be an extreme example, it shows that 
there are important underlying aspects of the data that cannot be 
assessed by a model. Fortunately, these issues tend to diminish 
when more data is present, and thus should not have a large ef-
fect on trends assessed as reliable. Our model also assumes that 
adding additional time series to the LPD will maintain the parame-
ters of the regional taxonomic group to which they are added (e.g., 
the mean time series length and the level of variance in population 
mean growth rates will not change). This can result in the model 
severely overestimating the numbers of populations required to 
achieve a reliable trend. For example, it suggested that 9087 pop-
ulations of freshwater Afrotropical birds are needed. This likely oc-
curred due to problems with the existing data. Although there are 
128 freshwater Afrotropical bird populations in the LPD, most of 
them are short and/or sporadically observed (the mean number of 
observations is 4.0), and observations are clustered in the 1990s 
and 2000s, with only a single time series containing observations 
after 2009. However, this is an issue only for small or exceptionally 
poor quality samples (e.g., short time series, few studies, biased dis-
tribution in time and space), and if more and better time series are 
added to the LPD, the model should improve its estimates.

Another limitation of our modelling approach is that we could 
not correct for the sizes of the ‘real-world’ datasets (the num-
ber of populations that exist) that the LPD ‘samples’ are drawing 

from, and therefore may overestimate the sample size needed to 
achieve a reliable trend for very small datasets. Although there are 
estimates of the number of species for each regional taxonomic 
group, our model uses populations as the base unit to measure 
sample size. We chose to base sample size on populations rather 
than species for two reasons. First, we found that mean growth 
rates within the LPD vary almost as much between populations 
within a species as they do between species. Therefore, we cannot 
assume that the trend of a population represents the trend of the 
species it belongs to any better than it represents the trend of its 
entire regional taxonomic group. Second, localized threats such 
as land-use change and habitat destruction are likely to affect 
some populations within a species disproportionately. Population 
extinctions also occur much more frequently than species extinc-
tions, and may serve as an early warning (Ceballos et al.,  2017). 
However, a population is not a well-defined unit, and we do not 
have estimates of how many populations each species or regional 
taxonomic group is composed of. While our testing suggested we 
can assume the number of existing populations to be unimport-
ant in determining trend reliability, this assumption breaks down 
when the sample comprises a large percentage of the dataset. It 
is unlikely that any regional taxonomic groups currently approach 
this level of representation within the LPD, but it is nonetheless an 
important caveat to be aware of.

Despite these caveats, the results of our study reveal the 
strengths and weaknesses in our understanding of global vertebrate 
biodiversity, highlighting the regional taxonomic groups for which 
we have enough data to make responsible decisions, as well as those 
on which future data gathering and collation efforts should focus. 
Some underlying aspects of the data create biases that are not taken 
into account by our modelling approach, and more fine-scale stud-
ies on gaps in population trends should be performed to better un-
derstand these biases and where to divert scientific resources. We 
show that revisiting previously-studied populations is a quick and 
efficient way to improve trend reliability for data deficient groups 
until more long-term studies can be completed and made available. 
The modelling approach we use to quantify trend reliability can also 
be generalized to assess other global and/or regional biodiversity in-
dices that utilize population time series data. We are facing an urgent 
global biodiversity crisis made worse by biased and deficient data, 
but through careful study and cooperative global efforts we can 
solve the data problem and begin to ‘bend the curve’ of biodiversity 
toward a positive trend.
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